53 research outputs found

    Calendar Year 2009 Report to the Rio Grande Compact Commission

    Get PDF

    Spartan Daily, November 22, 1989

    Get PDF
    Volume 93, Issue 57https://scholarworks.sjsu.edu/spartandaily/7916/thumbnail.jp

    Risk as a process: a history informed hazard planning approach applied to the 2018 post-fire debris flows, Montecito, California

    Get PDF
    Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979. We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters

    Narrative report of the town officers of Amherst, New Hampshire for the year ending December 31, 1998 and financial records for the fiscal year ending June 30, 1998.

    Get PDF
    This is an annual report containing vital statistics for a town/city in the state of New Hampshire

    Towards immersive virtual environments for GIS based hydrologic modeling

    Get PDF
    The tools of Geographic Information Systems have become increasingly valuable in hydrologic assessments and play an integral role in decision-making processes for flood prediction and mitigation. On the other hand, a quite distinct activity has been the development of GIS-based simulation modeling and visualization systems including realistic landscape visual simulations. Typically GIS, hydrologic simulation models, and virtual reality technology have been utilized as stand alone problem-solving domains. The increasing availability of high performance computation and visualization tools, offers new opportunities to combine sophisticated GIS modeling tools and emerging immersive visualization and decision support environments. This research describes the development of an interactive environment that utilizes the tools of virtual reality and GIS to enhance spatial hydrologic modeling. More specifically this research involves development and application of an interactive virtual modeling environment for spatially explicit hydrologic modeling in support of flood mitigation and flood management decision-making for the Squaw Creek watershed in central Iowa. The environment contains tools to manipulate and display geospatial data, spatial explicit output flow predicted by the Hydrological Engineering Center\u27s Hydrological Modeling System (HEC-HMS) and an immersive virtual environment that uses the Cave Automatic Virtual Environment (CAVE) to increase perception and realism. A component of the study was to develop tools to perform spatial hydrologic modeling in a microcomputer-based three-dimensional virtual environment using a head mounted haptic display. The unique combination of spatially explicit hydrologic models with geospatial and virtual reality visualization tools improves hydrologic analysis of what-if land-use and land management options and their hydrological impacts provides an opportunity for rapid assessment of hydrological conditions for improved collaborative environmental decision-making, and enhance the ability of resources planners to navigate and interact with the synthetic landscape environment

    Forest landscapes and global change. New frontiers in management, conservation and restoration. Proceedings of the IUFRO Landscape Ecology Working Group International Conference

    Get PDF
    This volume contains the contributions of numerous participants at the IUFRO Landscape Ecology Working Group International Conference, which took place in Bragança, Portugal, from 21 to 24 of September 2010. The conference was dedicated to the theme Forest Landscapes and Global Change - New Frontiers in Management, Conservation and Restoration. The 128 papers included in this book follow the structure and topics of the conference. Sections 1 to 8 include papers relative to presentations in 18 thematic oral and two poster sessions. Section 9 is devoted to a wide-range of landscape ecology fields covered in the 12 symposia of the conference. The Proceedings of the IUFRO Landscape Ecology Working Group International Conference register the growth of scientific interest in forest landscape patterns and processes, and the recognition of the role of landscape ecology in the advancement of science and management, particularly within the context of emerging physical, social and political drivers of change, which influence forest systems and the services they provide. We believe that these papers, together with the presentations and debate which took place during the IUFRO Landscape Ecology Working Group International Conference – Bragança 2010, will definitively contribute to the advancement of landscape ecology and science in general. For their additional effort and commitment, we thank all the participants in the conference for leaving this record of their work, thoughts and science
    • …
    corecore